
Abstract of Paper for the 17* AIAA Computational Fluid Dynamics Conference
June 6-9,2005, Toronto, Canada

Parallelization I of Lower-Upper Symmetric Gauss-Seidel
Method for Chemically Reacting Flow

Seokkwan Yoon*, Gabrieie Jost** and Sherry Changl'

NASA Ames Research Center
Moffett Field, California 9403

Introduction

Development of technologies for exploration of the solar system has revived an interest in computational
simulation of chemically reacting flows since planetary probe vehicles exhibit non-equilibrium phenomena
during the armospheric entry of a planet or a moon as well as the reentry to the Earth. Stability in
combustion is essential for new propulsion systems. Numerical solution of real-gas flows often increases
computational work by an order-of-magnitude compared to perfect gas flow partly beatuse of the increased
complexity of equations to solve. Recently, as part of Project Columbia, NASA has integrated a cluster of
interconnected SGI Altix systems to provide a ten-fold increase in current supercomputing capacity that
includes an SGI Origin system. Both the new and existing machines are based on cache coherent non-
uniform memory access architecture.

Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation method' has been implemented into both
perfect and real gas flow codes24 including Real-Gas Aerodynamic Simulator (RGAS)9. However, the
vectorized RGAS code runs inefficiently on cache-based shared-memory machines such as SGI system.
Parallelization of a Gauss-Seidel method is nontrivial due to its sequential nature.

The LU-SGS method has been vectorized on an oblique plane in INS3D-LU code4 that has been one of the
base codes for NAS Parallel benchmark^'^. The oblique plane has been called a hyperplane by computer
scientists. It is straightforward to parallelize a Gauss-Seidel method by partitioning the hyperplanes once
they are formed. Another way of parallelization is to schedule processors like a pipeline using software"-'2.
Both hyperplane and pipeline methods have been implemented using openMP directives. The present paper
reports the performance of theparallelized RGAS code on SGI Origin and Altix systems.

Numerical Methods

Let r be time; Q the vector of ccmerved variables; E, F, and G the convective flux vectors; E,, F,, and

G, the flux vectors for the viscous terms. The source term S represents production or destruction of

'NASA Advanced Supcromputing WAS) Division
**Computer Sciences Corporation

species due to chemical reactions. The three-dimensional Navier-Stokes and species rransport eqmtion~ in
generaiized c w i m coordllliites (E q, 5) can be written as

The governing equations are integrated in time for both steady and unsteady flow calculations. For steady-
state solutions, a is set to 1. An unfactored implicit scheme can be obtained from a nonlinear implicit
scheme by linearizing the flux vectors about the previous time step and dropping terms of second and
higher orders.

where

I is the identity matrix and AQ denotes the correction. A, B, C. and H are the Jacobian matrices of the
convective flux vectors and the source term respectively. Artificial dissipation models augment a
piecewise-constant cell-centered finite-volume formulation of the right hand side.5

Direct inversion of a large block banded matrix becomes impractical in three dimensions because of the
rapid increase of computational work and the large storage requirement. The LU-SGS scheme is one of the
approximate factorization methods to alleviate the difficulties in three dimensions. Let subscriptsfand s
indicate fluid and species transport equations respectively. The loosely-coupled method solves the Navier-
Stokes and species transport equations separately but the solutions are updated simultaneously at each time
step.

where

Lf = I + d t (D i A ; + D i B ; + D t C ;

a
-A; -B; - C r)

D f = I +&(A; + B; + C; - A; - B; -Cy)

Uf = I +aL\r(D; A; + D,' B; + D;Cj

+ A; + B; + c;)

3

The loosely-coupled partially-implicit scheme includes the source Jacobian term H only in the L, factor.
Solving the equations in a loosely-coupled manner ignores such terms in the Jacobian mamx A, for
example, as aEf /aQ5 and a€, I aQf.

Pardebtion methods

The original vector code ran inefficiently on cache-based systems. First, manual optimization that included
array changes enhanced the performance of the serial code greatly. The LU-SGS scheme in the code was
vectorized on a hyperplane where i+j+k=comt. The key element was the conversion of three-dimensional
indices (ij.k) to two-dimensional ones (ipoint, ip~ane)~.

Once the hyperplane is formed, it is straightforward to parallelize the algorithm by partitioning the plane.
The method has the limitation that parallelism is restricted to points within one hyperplane. In order to
improve memory access and to alleviate communication related problems, the code has been converted
manually to use a canonical ordering. The restructured code improves the serial performance by a factor of
two, already a significant speed-up on its own. Then the processors are scheduled like a pipeline on the
outermost loop level. Sequential operations in each processor are performed in a cache. This approach
exploits partial parallelism in loops that cany dependencies.

Both hyperplane and pipeline codes are parallelized using Computer-Aided Parailelizer and Optimizer
(CAPO) parallelization tool for the OpenMP parallelization. This task would have been very time
consuming when performed manually, particularly in view of the fact that the code requires sophisticated
parallelization techniques such as pipelined thread execution, which is not available via automatic
parallelization of the vendor commercial compiler. The rapid tool based parallelization allows for the
comparison of different strategies and to choose the most efficient implementation.

The paralielization is non-trivial, since the implementation gives rise to a number of conservative and
actual data dependencies. CAPO uses the extensive dependency analysis module of the Parawise system,
and, based on the information resulting from the analysis, inserts OpenMP directives into the source code.
The following features of CAPO, which are not available via automatic compiler parallelization, are
essential for the efficiency of the parallel code, CAPO provides an extensive set of browsers to allow user
interaction for improvements of the generated c&. This makes it possible to interactively declare the
scope of certain as either shared or private and thereby removing conservatively assumed dependencies,
which w d d inhibit parallelization for the compiler. CAPO optimizes the parallel code by merging the
parallelized loops within a routine into a large parallel region. This reduces time spent in overhead to fork
and join at the begimhg and end of parallel loops.

Preliminary Results

The SGI Origin and Altix shared-memory systems are based on 0.6 GHz RISC and 1.5 GHz Intel Itanium-
2 processors respectively. Timings for the serial and the parallel executions were obtained using the -02
optimization compiler flag during compilation.

In order to investigate the performance of parallel Gauss-Seidel methods for reacting flow, a scramjet
problem has been calculated as a test case. While the weight of the oxygen tank exceeds thirty percent of

the total weight of the Space Shuttle at launch, only one percent of the total weight is for the payload. The
air-breathing rocket propulsion systems, which consume oxygen in the air, offer clear advantages by
making vehicles lighter and more efficient Fuel-air mixii and rapid combushon are of crucial importance
fm the success of scramjet engines smce the spreadiig rate of the supersonic mixing layer decreases as the
Mach number increases. In our test case, hydrogen fuel is injected transversely to incoming supersonic flow
of air. The incoming air speed, pressure and temperature are assumed to be Mach 2,1 a m and 1 ,OOO’ K_

Gaseous hydrogen is injected at the sonic speed through a hole at the bottom wbose non-catatytic wall is
cooled at 600’ K- The length of combustion chamber is 40 times the diameter of injector. The Reynolds
number based on the length is approximately IO’. A 257 x 257 x 257 structured grid (approximately 17
million points) has been used with symmetric boundary conditions at the top and side walls. Supersonic
flow boundary conditions are imposed at the inlet and outlet planes.

Figure 1 compares the parallel efficiency of the pipeline code on SGI Altix and Origin systems. Both
systems show a comparable performance up to 16 processors whiIe the efficiency of the Origin are better
than the Altix on 32 and 64 processors. However, the Altix appears to outperform the Origin on 128
processors since tbe speedup of the Origin reaches a plateau at 64 processors. Figure 2 shows the relative
speedup of the Altix over the Origin. It is not surprising that the Altix is two to three times faster than the
Origin considering the speed of Altix chip is 2.5 times faster than the Origin’s. What is interesting is that
the best performance of the Altix seems to be at 128 processors. Final manuscript will include a detailed
analysis of different padle i i t ion methods.

Summary

Parallelition methods have been implemented for a symmetric Gauss-Seidel relaxation algorithm in
conjunction with a looselycoupled scheme for chemically reacting non-equilibrium flow. Both hyperplane
and pipeline methods have been implemented into Real-Gas Aerodynamic Simulator code using openMP
directives on cache coherent non-uniform memory access architecture. Performance of the paralklization
methods have been demonstrated on SGI Altix and Origin shared memory systems.

References

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

1 I .

Yoon, S . and Jameson, A., “Lower-Upper Symmetric Gauss-Seidel Method for the Euler and Navier-
Stokes Equations,” A M Journal, Vol. 26, Sept 1988, pp. 1025-1026.
Shuen, J.S. and Yoon, S., “Numerical Study of Chemically Reacting Flows Using an LU-SSOR
Scheme,” AIAA Journal, Vol. 27, Dec. 1989, pp. 1752-1 760.
park, C. and Yoon, S., “Calculation of Real-Gas Ef f i t s on Blunt-Body Trim Angles,” AIAA Journal,
Vol. 30, Apr. 1992, pp. 999-1007.
Yoon, S. and Kwak, D., “Three-Dimensional Incompressible Navier-Stokes Solver using Lower-Upper
Symmetric Gauss-Seidel Algorithm,” AIAA Journal, Vol. 29, June 1991, pp. 874-875.
Yoon, S. and Kwak, D., “Multigrid Convergence of an Implicit Symmetric Relaxation Scheme,”
A I M Journal, Vol. 32, May 1994, pp. 950-955.
Chen, CL., McCroskey, W.J., and Obayash; S., ‘Numerical Solutions of Forward-Flight Rotor Flow
using an Upwind Method,” AIAA Paper 89-1846, June 1989.
Soetrisno, M., Imlay, S.T., and Roberts, D.W., and Taflin, D.E., “Development of a 3-D Zonal Implicit
Procedure for Hybrid Structured-Unstructured Grids,” AIM Paper 96-0167, Jan. 1996.
Sharov, D. and Nakahashi, K., “Reordering of 3-D Hybrid Unstructured Grids for Vectorized LU-SGS
Navier-Stokes Computations,” A M Paper 97-2102, June 1997.
Yoon, S., “Calculation of Supersonic Combustion using Implicit Schemes,” A M Paper 2003-3546,
June 2003, AIAA Journal (to appear).
Bailey, D., Barton, J., Lasinski, T., and Simon, H., “The NAS Parallel Benchmarks,” NAS TR-91-002,
Jan. 1991.
Van der Wijngaart, R., Private communications

12. Jin, H., Private communications

4

0 50 100 150

Number of p r ~ s s w s

Fig. 1 ~ Parallel Efficiency of Altix and Origin

0 50 100 150
Number of processors

Fig. 2. Relative Speedup of Altix over Origin

